Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958690

RESUMEN

Thermotropic mesogens typically exist as liquid crystals (LCs) in a narrow region of high temperatures, making lowering their melting point with the temperature expansion of the mesophase state an urgent task. Para-substituted benzoic acids can form LCs through noncovalent dimerization into homodimers via hydrogen bonds, whose strength and, consequently, the temperature region of the mesophase state can be potentially altered by creating asymmetric heterodimers from different acids. This work investigates equimolar blends of p-n-alkylbenzoic (kBA, where k is the number of carbon atoms in the alkyl radical) and p-n-alkyloxybenzoic (kOBA) acids by calorimetry and viscometry to establish their phase transitions and regions of mesophase existence. Non-symmetric dimerization of acids leads to the extension of the nematic state region towards low temperatures and the appearance of new monotropic and enantiotropic phase transitions in several cases. Moreover, the crystal-nematic and nematic-isotropic phase changes have a two-step character for some acid blends, suggesting the formation of symmetric and asymmetric associates from heterodimers. The mixing of 6BA and 8OBA most strongly extends the region of the nematic state towards low temperatures (from 95-114 °C and 108-147 °C for initial homodimers, respectively, to 57-133 °C for the resulting heterodimer), whereas the combination of 4OBA and 5OBA gives the most extended high-temperature nematic phase (up to 156 °C) and that of 6BA and 9OBA (or 12OBA) provides the existence of a smectic phase at the lowest temperatures (down to 51 °C).


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Calorimetría , Temperatura , Transición de Fase , Reología
2.
Carbohydr Polym ; 313: 120896, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182979

RESUMEN

Pickering bitumen emulsions stabilized by 1 % aqueous dispersion of microfibrillated cellulose (MFC) were used to obtain micro- and nanocomposite asphalt binders. Initial bitumen emulsions are characterized by a yield stress for a bitumen content of up to 40 %, while higher bitumen amounts result in phase inversion with the formation of highly viscous inverse emulsions. Drying of emulsions leads to the production of nanocomposite bitumen binders containing from 0.6 % to 8.3 % of MFC. In this case, the MFC content of 1.5 % or more formed a microfibrillar network in the bitumen, which gives it gel-like properties and the yield stress, increasing its cohesive strength and resistance to rutting. The effect of addition of 5 % sodium dodecyl sulfate (SDS) on the properties of the bitumen emulsions and the resulting binders is considered. SDS increases the emulsifying ability of MFC, making it possible to obtain 70 % direct bitumen emulsions and reducing their effective viscosity together with the yield stress. However, the presence of SDS in the dried binders increases the aggregation of MFC, reducing the stiffness of the resulting microcomposite binders, their yield stress, and rutting resistance.

3.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903311

RESUMEN

Natural bitumens consist of many molecules whose chemical composition depends on the oilfield and determines the physicochemical properties of the bitumens as materials. Infrared (IR) spectroscopy is the fastest and least expensive method to assess the chemical structure of organic molecules, which makes it attractive in terms of rapid prediction of the properties of natural bitumens based on their composition evaluated in this way. In this work, IR spectra were measured for ten samples of natural bitumens significantly different in properties and origin. Based on the ratios of certain IR absorption bands, bitumens are proposed to be divided into paraffinic, aromatic, and resinous. In addition, the internal relationship between IR spectral characteristics of bitumens, such as polarity, paraffinicity, branchiness, and aromaticity, is shown. A study of phase transitions in bitumens by differential scanning calorimetry was carried out, and the use of a heat flow differential to find hidden points of bitumens' glass transitions is proposed. Furthermore, the dependences of the total melting enthalpy of crystallizable paraffinic compounds on the aromaticity and branchiness of bitumens are demonstrated. A detailed study of bitumens' rheology in a wide temperature range was carried out, and characteristic features of rheological behavior for different bitumen classes are revealed. Based on the viscous properties of bitumens, their glass transition points were found and compared with the calorimetric glass transition temperatures and nominal solid-liquid transition points obtained from temperature dependences of bitumens' storage and loss moduli. The dependences of viscosity, flow activation energy, and glass transition temperature of bitumens on their IR spectral characteristics are shown, which can be used to predict the rheological properties of bitumens.

4.
Carbohydr Polym ; 272: 118509, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34420754

RESUMEN

A new approach to produce biodegradable low-temperature greases, based on cellulose acetate butyrate (CAB) that dissolves in the medium of acetyl tributyl citrate (ATBC) at high temperatures and produces a gel during cooling because of phase separation, is proposed. Rheological properties of CAB solutions and gels in a wide temperature range from -80 °C to 160 °C were investigated with characterization of their viscoelasticity and viscoplasticity that arise because of the sol-gel transition of CAB/ATBC systems at 55 °C. CAB gelation reduces the wear coefficient tenfold when using ATBC as a lubricant but leads to a noticeable increase in the friction coefficient. To improve tribological properties of gel greases, additives of various solid particles were used: hexagonal boron nitride, graphite, and polytetrafluoroethylene (PTFE). The introduction of 10% to 30% additives in a gel grease containing 10% CAB has shown the preference of PTFE at a concentration of 10% for improving grease tribological characteristics.


Asunto(s)
Celulosa/análogos & derivados , Reología , Temperatura , Lubricantes , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...